显示模板-统计DS
美国-布朗大学

布朗大学
数据科学硕士


简 介

  • 布朗大学的数据科学硕士课程 (  Master of Science, ScM) 为来自广泛学科背景的学生在数据科学领域的独特职业做好准备

  • 该硕士课程联合应用数学,生物统计学,计算机科学和数学等相关专业,为学生提供独特而严谨的教育

  • 该专业旨在提供对数据科学方法和算法的基本理解,通过研究数学、统计学和计算机科学的相关课题来实现,包括机器学习、数据挖掘、安全和隐私、可视化和数据管理

  • 该课程还提供了在各领域重要的、一线的数据科学问题上的经验,并向学生介绍了围绕数据科学及其应用的伦理和社会考虑

项目授课地点:美国 罗得岛 普罗维登斯
申请要求


学术


  • 申请人必须具有学士学位或认可机构的认可同等学历

  • 先决条件:至少完成1年的微积分、1个学期的线性代数、1个学期的微积分基础课程概率和统计,以及编程课程


TOEFL


接受

GRE


必须的

IELTS


建议总分:7.5+

其他要求




申请流程

第1步:准备好申请文件

  • 推荐信
三封推荐信


  • PS
The statement that accompanies your application is an important element that helps us learn more about you. There is no required length or topic, but we would like to learn more about your background and expected future in data science at a minimum.

  • 工作经验
We regularly accept applicants who have had work experience after their undergraduate degree, both in data science related fields and not. Not all applicants have work experience, but for those who do, a good description helps us better evaluate your application.

  • 研究经验
Research experience is not required for master's applicants and many of our applicants do not have any, but you can use experience you've had to demonstrate your ability to handle graduate-level data science material.

  • Resume

第2步:需要的其他文件

  • 扫描并上传每所就读大学的学校颁发的成绩单
  • 官方学位证书(申请时如未毕业可不提供)
  • 需要提交 GRE 成绩
  • 提交英语语言能力成绩
  • 护照复印件
  • 本科和/或研究生学位的记录 

第3步:在线填表申请
4步:递交申请费

GT备考
核心课程

  • DATA 1030. Hands-on Data Science. 

Develops all aspects of the machine learning pipeline: data acquisition and cleaning, handling missing data, exploratory data analysis, visualization, feature engineering, modeling, interpretation, presentation in the context of real-world datasets. Fundamental considerations for data analysis are emphasized (the bias-variance tradeoff, training, validation, testing). Classical models and techniques for classification and regression are included (linear and logistic regression with regularization, support vector machines, decision trees, random forests, XGBoost). Uses the Python data science ecosystem (e.g., sklearn, pandas, matplotlib).

  • DATA 1050. Data Engineering. 

This course covers the storage, retrieval, and management of various types of data and the computing infrastructure (such as various types of databases and data structures) and algorithmic techniques (such as searching and sorting algorithms) and query languages (such as SQL) for interacting with data, both in the context of transaction processing (OLTP) and analytical processing (OLAP). Students will be introduced to measures for evaluating the efficacy of different techniques for interacting with data (such as ‘Big-Oh’ measure of complexity and the number of I/O operations) and various types of indexes for the efficient retrieval of data. The course will also cover several components of the Hadoop ecosystem for the processing of "big data." Additional topics include cloud computing, NoSQL databases, and modern data architectures. Introduction to some of the concepts and techniques of computer science essential for data science will also be covered.

  • APMA 1690. Computational Probability and Statistics. 

Examination of probability theory and mathematical statistics from the perspective of computing. Topics selected from random number generation, Monte Carlo methods, limit theorems, stochastic dependence, Bayesian networks, dimensionality reduction. Prerequisites: APMA 1650 or equivalent; programming experience is recommended.

  • DATA 2020. Statistical Learning. 

A modern introduction to inferential methods for regression analysis and statistical learning, with an emphasis on application in practical settings in the context of learning relationships from observed data. Topics will include basics of linear regression, variable selection and dimension reduction, and approaches to nonlinear regression. Extensions to other data structures such as longitudinal data and the fundamentals of causal inference will also be introduced.

  • DATA 2080. Data and Society. 

A course on the social, political, and philosophical issues raised by the theory and practice of data science. Explores how data science is transforming not only our sense of science and scientific knowledge, but our sense of ourselves and our communities and our commitments concerning human affairs and institutions generally. Students will examine the field of data science in light of perspectives provided by the philosophy of science and technology, the sociology of knowledge, and science studies, and explore the consequences of data science for life in the first half of the 21st century.

  • CSCI 2470, or equivalent. Deep Learning

Deep Learning belongs to a broader family of machine learning methods. It is a particular version of artificial neural networks that emphasizes learning representation with multiple layers of networks. Deep Learning, plus the specialized techniques that it has inspired (e.g. convolutional neural networks, recurrent neural networks, and transformers), have led to rapid improvements in many applications, such as computer vision, machine learning, sound understanding, and robotics. This course gives students an overview of the prominent techniques of Deep Learning and its applications in computer vision, language understanding, and other areas. It also provides hands-on practice of implementing deep learning algorithms in Python. A final project will implement an advanced piece of work in one of these areas.

  • Machine Learning Theory

New course coming spring 2023. We will introduce the mathematical methods of data science through a combination of theory, computational methods, and visualization. We formally define the statistical learning framework, common assumptions in the data generation process, and learning models. The mathematical models behind common supervised and unsupervised techniques are discussed. Students will implement some of the algorithms from scratch using standard python and numpy. The course includes a final project. Students will read a peer-reviewed publication on a machine learning topic of their choice and they will write a blog post/article and give a presentation explaining the methods and results of the publication to a non-expert audience.

  • DATA 2050. Data Practicum. 

The practicum experience is a hands-on thesis project that entails an in-depth study of a current problem in data science. Students will synthesize their knowledge of probability and statistics, machine learning, and data and computational science. Students may use an internship in industry for the practicum, or work with a faculty member at Brown or elsewhere. The project must be approved beforehand by the DATA 2050 instructor and students must provide regular interim reports and a final presentation.

选修课:

  • 选择与个人兴趣相关的领域知识,必须是研究生水平的课程,课程编号以非0位数字开头。
 
  • 大多数研究生水平的CSCI和APMA课程都符合条件。

  • 如果你计划选修不同部门的课程,请联系DGS。

统计Stat & 数据科学DS专业 - 常申院校
点击院校了解具体详情

模板留学服务-统计DS
留学录取案例
返回 统计Stat & 数据科学DS专业 - 留学申请方案
分享到:
分享到:
更多专业常申院校
  • 芝加哥
    美国 - 芝加哥大学
    【公共政策】

    国家:美国
    位置:伊利诺伊·芝加哥
    简介:常年稳居全美前10
    建校:1890年


    >>点击查看学校详情


  • 美国-杜克
    美国 - 杜克大学
    【公共政策】

    国家:美国
    位置:北卡·达勒姆
    简介:常年在全美前10
    建校:1838年


    >>点击查看学校详情


  • 美国-CMU
    美国 - 卡内基梅隆CMU
    【商业情报与数据分析】

    国家:美国
    位置:宾州·匹兹堡
    简介:计算机类大牛校
    建校:1900年


    >>点击查看学校详情


  • 1
    美国 - 宾夕法尼亚大学
    【公共政策】

    国家:美国
    位置:宾州·费城
    简介:常春藤Ivy盟校
    建校:1740年


    >>点击查看学校详情


  • 香港大学
    香港 - 香港大学
    【公共管理MPA】

    国家:中国香港
    位置:香港·薄扶林道
    简介:亚洲常春藤
    建校:1911年


    >>点击查看学校详情


  • 美国-哥大
    美国 - 哥伦比亚大学
    【商业分析BA】

    国家:美国
    位置:纽约州·纽约
    简介:美国常春藤Ivy盟校
    建校:1754年


    >>点击查看学校详情


  • 美国-康奈尔
    美国 - 康奈尔大学
    【公共管理】

    国家:美国
    位置:纽约州伊萨卡
    简介:常春藤盟校八成员之一
    建校:1865年


    >>点击查看学校详情


  • 美国-宾大UPenn
    美国 - 宾夕法尼亚大学
    【计算机与信息技术】

    国家:美国
    位置:宾州·费城
    简介:常春藤Ivy盟校
    建校:1740年


    >>点击查看学校详情


  • 美国-西北大学
    美国 - 西北大学
    【统计】

    国家:美国
    位置:伊利诺伊·埃文斯顿
    简介:常年稳居全美前10
    建校:1851年


    >>点击查看学校详情


  • 美国-JHU
    美国 - JHU
    【应用数学与统计学】

    国家:美国
    位置:马里兰·巴尔的摩
    简介:连续多年美国前十
    建校:1879年


    >>点击查看学校详情


常申专业解析
+