威斯康辛麦迪逊大学数据科学硕士+ 查看更多
威斯康辛麦迪逊大学
数据科学硕士
+ 查看更多
- 该校的数据科学项目是研究如何从杂乱无章的数据中提取有用信息的一门学科
- 该校的数据科学硕士将在统计理论、方法和实践背景的引导下,结合沟通技巧的培训,以培养新一代的领导者,他们将有效地利用数据进行规划和决策
- 该项目使学生能够利用统计思维将复杂数据的模糊问题转化为务实的分析步骤
项目时长:1到2年全日制
项目授课地点:美国 威斯康星州 麦迪逊
申请要求
申请流程
|
必修课程:
Statistics Core, complete all 3 courses below
- STAT 611 Statistical Models for Data Science
- STAT 612 Statistical Inference for Data Science
- STAT 613 Statistical Methods for Data Science
Computer Sciences Core, select 1 course from each category
Algorithms
- Introduction to Optimization
- Introduction to Algorithms
- Nonlinear Optimization I
Systems
- Introduction to Operating Systems
- Database Management Systems: Design and Implementation
- Introduction to Computer Networks
- Introduction to Information Security
- Distributed Systems
- Big Data Systems
- Topics in Database Management Systems
Humans and Data
- Data Visualization
- Human-Computer Interaction
Machine Learning Core, select 2 courses from the list below6
- Introduction to Artificial Intelligence
- Machine Learning
- Mathematical Foundations of Machine Learning
- Advanced Deep Learning
- Introduction to Machine Learning and Statistical Pattern Classification
- Introduction to Deep Learning and Generative Models
- Statistical Learning
选修课:
Data Science Electives, select 6 credits from the courses below
- Introduction to Optimization
- Introduction to Operating Systems
- Database Management Systems: Design and Implementation
- Introduction to Bioinformatics
- Introduction to Algorithms
- Introduction to Computer Networks
- Introduction to Information Security
- Graduate Cooperative Education
- Nonlinear Optimization I
- Advanced Operating Systems
- Distributed Systems
- Big Data Systems
- Security and Privacy for Data Science
- Topics in Database Management Systems
- Data Visualization
- Computer Vision
- Advanced Natural Language Processing
- Human-Computer Interaction
- Foundations of Data Management
- Master's Research
- Theoretical Foundations of Machine Learning
- Data and Algorithms: Ethics and Policy
- R for Statistics I and R for Statistics II and R for Statistics III
- Introduction to Time Series
- Introductory Nonparametric Statistics
- An Introduction to Sample Survey Theory and Methods
- Applied Categorical Data Analysis
- Data Science with R
- Classification and Regression Trees
- Applied Multivariate Analysis
- Financial Statistics
- Introduction to Computational Statistics
- Statistical Methods for Spatial Data
- Applied Time Series Analysis, Forecasting and Control I
- Multivariate Analysis I
- Decision Trees for Multivariate Analysis
- Statistical Computing
- Simulation Modeling and Analysis
- Stochastic Modeling Techniques
- Stochastic Programming
- Dynamic Programming and Associated Topics
- Integer Optimization
分享到:
相关专业申请 - 数据科学DS
相关专业申请 - 数据科学DS
相关专业申请 - 商业分析BA
相关专业申请 - 商业分析BA